4.7 Article

A new organosilane passivation agent prepared at ambient temperatures to inhibit pyrite oxidation for acid mine drainage control

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 320, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2022.115835

关键词

Acid mine drainage abatement; Organosilane coating; Passivation; Pyrite; Ambient temperature

资金

  1. National Key R&D Program of China [2019YFC1805002]
  2. National Natural Science Foundation of China [51874018]

向作者/读者索取更多资源

In this study, a new organosilane passivation agent was successfully prepared at ambient temperatures to inhibit pyrite oxidation. The experimental results showed that the passivation agent effectively reduced the oxidation rate of pyrite and improved its oxidation resistance.
Acid mine drainage (AMD) is a significant environmental problem caused by the oxidation of pyrite and other metal sulfide ores. Organosilane passivation is an effective strategy to inhibit pyrite oxidation. However, synthetic organic silane passivation agents generally require temperatures of 50-80 degrees C, resulting in high energy consumption and high synthesis cost. In this study, a 3-aminopropyltrimethoxysilane -methyltrimethoxysilane (APS-MTMS) coatings was successfully prepared at ambient temperatures of 15-40 degrees C as a passivation agent to inhibit pyrite oxidation. Chemical leaching tests were used to study the inhibition performance of APS-MTMS for pyrite oxidation. The experimental results showed that the release of the total Fe from APS-MTMS-coated pyrite was 11.31 mg/L after chemical oxidation for 7 hours, and the passivation rate can reach 77.78%. The contact angle of the APS-MTMS-coated pyrite was significantly larger (140.4 degrees) than that of the bare pyrite (58.8 degrees), indicating that APS-MTMS prompted the formation of a superhydrophobic surface of pyrite, improving the oxidation resistance. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were applied to probe the interaction mechanism of APS-MTMS with pyrite. The results indicated that APS accelerated the Si-O-Si formation by amino protonation and enriched a crosslinked network of Si-O-Si and Fe-O-Si on the pyrite surface to prevent pyrite oxidation. This study provides a novel method for preparing organosilane passivation materials at ambient temperatures for AMD control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据