4.4 Article

Hyperelastic or Hypoelastic Granular Circular Chain Instability in a Geometrically Exact Framework

期刊

JOURNAL OF ENGINEERING MECHANICS
卷 148, 期 9, 页码 -

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)EM.1943-7889.0002139

关键词

Discrete element method; Granular interactions; Dissipative phenomena; Hyperelastic interactions; Instability; Circular pattern; Granular chain; Geometrical nonlinearity

向作者/读者索取更多资源

This paper investigates different granular interaction laws used in discrete granular media modeling. It analyzes the properties and applications of these laws and shows that instabilities can occur under large displacements, with discrepancies between models increasing during deformation.
This paper investigates several granular interaction laws used in the modeling of discrete granular media. In the considered model, each grain interacts with its neighbors with a coupled shear-normal interaction law. The analysis is performed in a geometrically exact framework allowing large rotation and displacement evolutions, without any geometrical approximations. It is shown that most of the granular interaction laws available in the literature are classified as hypoelastic interaction laws, and we precise the requirements to build some hyperelastic interaction laws that avoid artificial dissipation. We also show that the uncoupled granular interaction law is hyperelastic for all the studied models. The analysis is applied to a paradigmatic elementary system of a granular loop with a diamond pattern (a four-grain cyclic granular chain) loaded by concentrated forces. Instabilities are observed for large displacement of the diamond chain for all the classified models. It is observed that the discrepancies between each model may grow during the deformation process. The instability phenomenon is associated with the appearance of a limit load for this granular structural problem due to large nonlinear geometrical effects. Blocking phenomena may also appear for such granular structural systems due to secondary granular contacts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据