4.3 Article

The Flutter Stability of Mistuned Bladed Disks Subjected to the Coriolis Effect

出版社

ASME
DOI: 10.1115/1.4056020

关键词

flutter; mistuning; Coriolis effect; cyclic symmetry; modal analysis

向作者/读者索取更多资源

This paper investigates the influence of the Coriolis effect on the aeroelastic stability of a single-piece bladed disk and highlights the complex interactions between flutter, mistuning, and the Coriolis effect. A genetic algorithm is used to determine the best detuning pattern, and it is shown that considering the Coriolis effect is necessary to ensure stability to flutter.
Intentional frequency mistuning referred to as detuning is known to be an effective mean to prevent aeroelastic flutter in gas turbines. The Coriolis effect, which is usually discarded, can reduce the mistuning effects and therefore compromise the stabilizing effect of detuning with respect to flutter. This paper presents an original study of the influence of the Coriolis effect on the aeroelastic stability of a single-piece bladed disk (blisk), which made it possible to highlight for the first time the complex interactions between flutter, mistuning, and the Coriolis effect. The blisk is modeled with a lumped parameter model and the aeroelastic self-excitations using Whitehead's theory. A genetic algorithm is used to determine the best detuning pattern to stabilize the flutter-prone blisk. The results show that if the detuning pattern is identified without taking the Coriolis effect into account, the detuned blisk can still be prone to flutter. The key driver of this loss of stability is the frequency separation of the modes resulting from the Coriolis effect, which decreases the mode interactions that are required to stabilize the system. This article demonstrates the need to consider the Coriolis effect when studying the aeroelastic stability of cyclic structures with flexible disk and blade-disk coupling. By doing so, it is shown that a higher level of detuning is needed to compensate the adverse effects of Coriolis and ensure stability to flutter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据