4.7 Article

A generalised drift-correcting time integration scheme for Brownian suspensions of rigid particles with arbitrary shape

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 467, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2022.111437

关键词

Brownian motion; Suspensions; Time integration; Fluctuations; Simulation

向作者/读者索取更多资源

This paper presents a generalized drift-correcting scheme for efficiently computing the random motion of micron and nanometre scale particles in overdamped fluids. The scheme seamlessly integrates with fast methods for computing hydrodynamic interactions and random increments, providing increased computational efficiency without sacrificing accuracy.
The efficient computation of the overdamped, random motion of micron and nanometre scale particles in a viscous fluid requires novel methods to obtain the hydrodynamic interactions, random displacements and Brownian drift at minimal cost. Capturing Brownian drift is done most efficiently through a judiciously constructed time-integration scheme that automatically accounts for its contribution to particle motion. In this paper, we present a generalised drift-correcting (gDC) scheme that accounts for Brownian drift for suspensions of rigid particles with arbitrary shape. The scheme seamlessly integrates with fast methods for computing the hydrodynamic interactions and random increments and requires a single full mobility solve per time-step. As a result, the gDC provides increased computational efficiency when used in conjunction with grid-based methods that employ fluctuating hydrodynamics to obtain the random increments. Further, for these methods the additional computations that the scheme requires occur at the level of individual particles, and hence lend themselves naturally to parallel computation. We perform a series of simulations that demonstrate the gDC obtains similar levels of accuracy as compared with the existing state-of-the-art. In addition, these simulations illustrate the gDC's applicability to a wide array of relevant problems involving Brownian suspensions of non-spherical particles, such as the structure of liquid crystals and the rheology of complex fluids. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据