4.7 Article

A fifth-order low-dissipation discontinuity-resolving TENO scheme for compressible flow simulation

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 467, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2022.111465

关键词

TENO; THINC; WENO; Shock-capturing schemes; Hyperbolic conservation laws

资金

  1. Guangdong Basic and Applied Basic Research Foundation [2022A1515011779]
  2. Key Laboratory of Computational Aerodynamics, AVIC Aerodynamics Research Institute
  3. Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone [HZQB-KCZYB-2020083]

向作者/读者索取更多资源

In this study, a new low-dissipation TENO scheme is proposed for compressible flow simulations, which enhances the capability of resolving discontinuities and suppresses numerical oscillations through an improved discontinuity-detecting criterion, a local interpolation-like strategy, and a two-steepness approximation.
For compressible flows characterized by a wide range of flow length scales and discontinuities, it is still an open challenge to design the optimal schemes, which resolve the small-scale flow structures with low numerical dissipation and capture the shock waves without artificial oscillations. In Takagi et al. [1], a novel TENO5-THINC scheme with the combination of classical TENO5 (fifth-order Targeted Essentially Non-Oscillatory) scheme and the non-polynomial THINC (Tangent of Hyperbola for INterface Capturing) reconstruction has been proposed. Building upon the strategy of isolating discontinuities from smooth and high-wavenumber regions, in the present work, a new very low-dissipation TENO scheme with discontinuity-resolving property is proposed for compressible flow simulations based on three new concepts: (1) an improved discontinuity-detecting criterion is devised based on the TENO weighting strategy, which significantly enhances the discontinuity-detecting accuracy compared to that in TENO5-THINC; (2) A local interpolation-like strategy is pro-posed to represent the detected discontinuity with subcell resolutions, and this strategy can minimize the numerical dissipation even when compared to the THINC reconstruction scheme; (3) According to the varying sharpness of the discontinuities separated by the discontinuity-detecting indicator, the local interpolation-like strategy is extended with a two-steepness approximation. Specifically, the discontinuities will be classified as genuinely sharp discontinuities and general ones. For the genuinely sharp discontinuities, the inter-face flux will be estimated by a steeper step-like function with even less numerical dissipation. The resulting scheme maintains the high-order and low-dissipation properties of the TENO scheme for smooth flow scales, while further improving the discontinuity-resolving capability and suppressing the numerical oscillations in the vicinity of discontinuities. A variety of benchmark cases with broadband length scales as well as discontinuities is presented to demonstrate the high wave-resolution property and the sharp shock-capturing capability of the proposed scheme. (C) 2022 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据