4.7 Article

Redox environment inducing strategy for enhancing biological phosphorus removal in a full-scale municipal wastewater treatment plant

期刊

JOURNAL OF CLEANER PRODUCTION
卷 376, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2022.134237

关键词

Membrane bioreactor (MBR); Redox; Enhancing biological phosphorus removal; (EBPR); Phosphate -accumulating organisms (PAO); Chemical phosphorus removal

资金

  1. Chengdu Xingrong Environment Co., Ltd. [20172001014]
  2. Chengdu Xingrong Environment Co., Ltd.
  3. Chengdu Drainage Co., Ltd.

向作者/读者索取更多资源

Phosphorus removal from wastewater is crucial for limiting water eutrophication. This study focused on enhancing biological phosphorus removal (BPR) efficiency in real full-scale municipal wastewater treatment plants (WWTPs) through improved redox environment and reduced chemicals consumption. The results showed that the strategy successfully increased BPR contribution, reduced chemicals dosage, and enriched phosphate-accumulating organisms (PAO) in the treatment process.
Phosphorus removal from wastewater is crucial for limiting water eutrophication. However, due to improper operating conditions, tremendous phosphorus removal chemicals addition or low C/N ratio in the influent, biological phosphorus removal (BPR) has been regarded as a difficult issue in real full-scale municipal wastewater treatment plants (WWTPs), especially in the membrane bioreactor (MBR) plants with long sludge retention time. Therefore, application of effective enhanced biological phosphorus removal (EBPR) technologies in WWTPs is of great significance to improve the BPR efficiency, reduce chemicals consumption and operating cost. Favorable redox environment, characterized by ORP is important for the growth and enrichment of phosphateaccumulating organisms (PAO), which is mainly responsible for BPR. In this study, a redox environment inducing strategy for EBPR was taken in a real full-scale MBR-WWTP (treatment capacity of 2 x 106 m3/d). The results indicated that the phosphorus release and uptake rate were rather low in the biochemical tank, which reflected the low phosphate-accumulating organisms (PAO) activity and poor BPR efficiency. This problem may be due to inappropriate redox environment, inhibition by phosphorus removal chemicals or low C/N in the influent. After EBPR, the contribution percentage of BPR increased by up to 18% and chemicals dosage reduced by up to 60%. Furthermore, the relative abundance of PAO (Dechloromonas, Thauera and OLB12) was significantly increased in anaerobic tank (4.62, 1.33 and 1.18%), in anoxic tank (4.85, 1.93 and 0.88%) and in oxic tank (5.17, 1.71 and 0.84%) for appropriate redox environment and relieved inhibition by less dosage of phosphorus removal chemicals. In addition, bacteria related to COD degradation and nitrogen removal were also enriched. The simultaneous enhancement of biological phosphorus removal, carbon removal and nitrogen removal was successfully realized in this research, which indicated that the strategy was effective in real large-scale WWTPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据