4.7 Article

Importance of Nuclear Quantum Effects on Aqueous Electrolyte Transport under Confinement in Ti3C2 MXenes

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.2c00771

关键词

-

资金

  1. Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences
  2. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Protons and water transport in confined interlayer spaces of 2D materials are influenced by nuclear quantum effects, which need to be considered for accurate simulations and predictions.
Protons display a high chemical activity and strongly affect the charge storage capability in confined interlayer spaces of two-dimensional (2D) materials. As such, an accurate representation of proton dynamics under confinement is important for understanding and predicting charge storage dynamics in these materials. While often ignored in atomistic-scale simulations, nuclear quantum effects (NQEs), e.g., tunneling, can be significant under confinement even at room temperature. Using the thermostatted ring polymer molecular dynamics implementation of path integral molecular dynamics (PIMD) in conjunction with the ReaxFF force field, density functional tight binding (DFTB), and NequIP neural network potential simulations, we investigate the role of NQEs on proton and water transport in bulk water and aqueous electrolytes under confinement in Ti3C2 MXenes. Although overall NQEs are relatively small, especially in bulk, we find that they can alter both quantitative values and qualitative trends on both proton transport and water self-diffusion under confinement relative to classical MD predictions. Therefore, our results suggest the need for NQEs to be considered to simulate aqueous systems under confinement for both qualitative and quantitative accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据