4.7 Article

Comprehensive molecular docking and dynamic simulations for drug repurposing of clinical drugs against multiple cancer kinase targets

期刊

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
卷 41, 期 16, 页码 7735-7743

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2022.2124453

关键词

Drug repurposing; chemotherapeutic drugs; molecular docking; virtual screening; structure-based drug designing (SBDD); molecular simulation (MD)

向作者/读者索取更多资源

This study uses molecular docking, virtual screening, and dynamics simulations to identify potential therapeutic agents for various cancer types. The researchers found that certain drugs showed potential against different cancer targets. They also built a library of novel molecules and utilized virtual screening tools to repurpose drugs and identify lead compounds.
Drug repurposing is a method to identify novel therapeutic agents from the existing drugs and clinical compounds. In the present comprehensive work, molecular docking, virtual screening and dynamics simulations were carried out for ten cancer types viz breast, colon, central nervous system, leukaemia, melanoma, ovarian, prostate, renal and lung (non-small and small cell) against validated eighteen kinase targets. The study aims to understand the action of chemotherapy drugs mechanism through binding interactions against selected targets via comparative docking simulations with the state-art molecular modelling suits such as MOE, Cresset-Flare, AutoDock Vina, GOLD and GLIDE. Chemotherapeutic drugs (n = 112) were shortlisted from standard drug databases with appropriate chemoinformatic filters. Based on docking studies it was revealed that leucovorin, nilotinib, ellence, thalomid and carfilzomib drugs possessed potential against other cancer targets. A library was built to enumerate novel molecules based on the scaffold and functional groups extracted from known drugs and clinical compounds. Twenty novel molecules were prioritised further based on drug-like attributes. These were cross docked against 1MQ4 Aurora-A Protein Kinase for prostate cancer and 4UYA Mitogen-activated protein kinase for renal cancer. All docking programs yielded similar results but interestingly AutoDock Vina yielded the lowest RMSD with the native ligand. To further validate the final docking results at atomistic level, molecular dynamics simulations were performed to ascertain the stability of the protein-ligand complex. The study enables repurposing of drugs and lead identification by employing a host of structure and ligand based virtual screening tools and techniques. Communicated by Ramaswamy H. Sarma

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据