4.6 Article

Crystal structures of photosystem II from a cyanobacterium expressing psbA2 in comparison to psbA3 reveal differences in the D1 subunit

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 298, 期 12, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2022.102668

关键词

-

资金

  1. Japan Society for the Promotion of Science, Japan-KAKENHI [JP17H064351, JP21H02447, JP20H05446, JP22H04754, JP20H03226, JP17H06434, JP22H04916]

向作者/读者索取更多资源

The three psbA genes (psbA1, psbA2, and psbA3) in the thermophilic cyanobacterium Thermosynechococcus elongatus have different expression patterns in response to changes in the growth environment. We crystallized PSII dimers from strains expressing only one psbA gene (psbA2 or psbA3) and analyzed their structures. Our results showed functional differences in the D1 protein expressed from these psbA genes, providing a structural basis for further functional examination.
Three psbA genes (psbA1, psbA2, and psbA3) encoding the D1 subunit of photosystem II (PSII) are present in the ther-mophilic cyanobacterium Thermosynechococcus elongatus and are expressed differently in response to changes in the growth environment. To clarify the functional differences of the D1 protein expressed from these psbA genes, PSII dimers from two strains, each expressing only one psbA gene (psbA2 or psbA3), were crystallized, and we analyzed their structures at resolu-tions comparable to previously studied PsbA1-PSII. Our results showed that the hydrogen bond between pheophytin/D1 (PheoD1) and D1-130 became stronger in PsbA2-and PsbA3-PSII due to change of Gln to Glu, which partially explains the increase in the redox potential of PheoD1 observed in PsbA3. In PsbA2, one hydrogen bond was lost in PheoD1 due to the change of D1-Y147F, which may explain the decrease in stability of PheoD1 in PsbA2. Two water molecules in the Cl-1 channel were lost in PsbA2 due to the change of D1-P173M, leading to the narrowing of the channel, which may explain the lower efficiency of the S-state transition beyond S2 in PsbA2-PSII. In PsbA3-PSII, a hydrogen bond between D1-Ser270 and a sulfoquinovosyl-diacylglycerol molecule near QB dis-appeared due to the change of D1-Ser270 in PsbA1 and PsbA2 to D1-Ala270. This may result in an easier exchange of bound QB with free plastoquinone, hence an enhancement of oxygen evolution in PsbA3-PSII due to its high QB exchange efficiency. These results provide a structural basis for further functional examination of the three PsbA variants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据