4.4 Article

Advances in Front-end Enabling Technologies for Thermal Infrared 'THz Torch' Wireless Communications

期刊

出版社

SPRINGER
DOI: 10.1007/s10762-016-0279-4

关键词

Thermal infrared; THz Torch; Blackbody radiation; Wireless communications; Frequency division multiplexing; Frequency-hopping spread-spectrum

资金

  1. China Scholarship Council (CSC)
  2. MRC [MC_PC_14100] Funding Source: UKRI
  3. Medical Research Council [MC_PC_14100] Funding Source: researchfish

向作者/读者索取更多资源

The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The 'THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据