4.3 Article

Triticale doubled haploid plant regeneration factors linked by structural equation modeling

期刊

JOURNAL OF APPLIED GENETICS
卷 63, 期 4, 页码 677-690

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13353-022-00719-7

关键词

Androgenesis; DNA methylation; Green plant regeneration efficiency; Sequence variation; Triticale

资金

  1. Ministry of Agriculture and Rural Development, Poland [HORhn-801-PB-22/15-18]

向作者/读者索取更多资源

The study investigates the relationship between copper ions and DNA methylation in triticale regeneration, suggesting that copper ions affect regeneration efficiency through cytosine methylation and may induce mutations.
Triticale regeneration via anther culture faces many difficulties, e.g., a low percentage of regenerated plants and the presence of albinos. Plant regeneration may be affected by abiotic stresses and by ingredients added to the induction medium. The latter influences biochemical pathways and plant regeneration efficiency. Among such ingredients, copper and silver ions acting as cofactors for enzymatic reactions are of interest. However, their role in plant tissue cultures and relationships with biochemical pathways has not been studied yet. The study evaluated relationships between DNA methylation, changes in DNA sequence variation, and green plant regeneration efficiency influenced by copper and silver ions during triticale plant regeneration. For this purpose, a biological model based on donor plants and their regenerants, a methylation-sensitive amplified fragment length polymorphism, and structural equation modeling were employed. The green plant regeneration efficiency varied from 0.71 to 6.06 green plants per 100 plated anthers. The values for the components of tissue culture-induced variation related to cytosine methylation in a CHH sequence context (where H is A, C, or T) were 8.65% for sequence variation, 0.76% for DNA demethylation, and 0.58% for de novo methylation. The proposed model states that copper ions affect the regeneration efficiency through cytosine methylation and may induce mutations through, e.g., oxidative processes, which may interfere with the green plant regeneration efficiency. The linear regression confirms that the plant regeneration efficiency rises with increasing copper ion concentration in the absence of Ag ions in the induction medium. The least absolute shrinkage and selection operator regression shows that de novo methylation, demethylation, and copper ions may be involved in the green plant regeneration efficiency. According to structural equation modeling, copper ions play a central role in the model determining the regeneration efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据