4.7 Article

Design of hierarchical porous carbon nanofibrous membrane for better electrochemical performance in solid-state flexible supercapacitors

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 920, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.165983

关键词

Flexible electrode; Hollow porous; Carbon nanofibers; Electrochemical performance

资金

  1. National Natural Science Foundation of China [52002039]

向作者/读者索取更多资源

The electrochemical performance of carbon nanofibers as electrode materials for supercapacitors can be controlled by changing the size and quantity of pores. Hollow porous carbon nanofibers prepared in this study showed excellent electrochemical performance and stable cycle performance. Solid-state supercapacitors assembled without any adhesives or conductive agents also exhibited good cycle stability and flexibility.
The pore structure dramatically influences the electrochemical behavior of carbon nanofibers. The electrochemical performance of flexible carbon nanofibers as electrode materials for supercapacitors can be controlled by changing the size and quantity of pores. Hollow porous carbon nanofibers (HPCNFs) are prepared by coaxial electrostatic spinning and high-temperature carbonization. According to the nitrogen adsorption/desorption curve, HPCNF has a large specific surface area and good pore size distribution. In addition, cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) are used to analyze the electrochemical performance of HPCNF. Results show that the specific capacitance of hollow porous carbon nanofibers is 168.8 F/g at the current density of 1 A/g. Moreover, the specific capacitance retention of HPCNF is 95.61 % after 2000 cycles of charge and discharge at the current density of 5 A/g, exhibiting a stable cycle performance. In addition, solid-state super capacitors assembled without any adhesives or conductive agents also show good cycle stability and excellent flexibility. As a result, HPCNF with flexibility, high specific surface area, and excellent electrochemical performance has broad prospects as an excellent electrode material for supercapacitors. Therefore, HPCNF has the advantages of good flexibility, high specific surface area, and excellent electrochemical performance. This paper proposes reasonable methods and creates more possibilities for future research and the application of flexible electrode materials for supercapacitors and flexible wearable electronic devices.(c) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据