4.7 Article

Disorder anisotropy of layered structure in multi-band MgB2 superconducting materials with high critical current performance

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 934, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.167873

关键词

Anisotropy; Critical current density; Disorder; MgB2 wire; X-ray methods

向作者/读者索取更多资源

Layered crystal structures form anisotropies in electronic, magnetic, and structural properties. Understanding the disorder anisotropy is crucial for enhancing material properties. The disorder anisotropy and its influence on in-field superconductivity in multi-band MgB2 materials are investigated. The results show that selective modification of the disordered structure, especially regarding in-plane size properties, is a practical approach for enhancing transport performance.
Layered crystal structures of various materials form through strong in-plane covalent and weaker out-of -plane bonding. The different bonding states can lead to the appearance of anisotropies not only of electronic/electrical and magnetic properties but also of structural disorder. A deeper understanding of the disorder anisotropy is essential to carry out structural modification and to enhance the material properties. However, in the case of multi-band MgB2 superconducting materials that have layered structures, including graphene-like and six-membered rings, the nature and extent of the disorder anisotropy are not well understood. Also unknown is the influence on the transport critical current performance under magnetic fields in terms of charge-carrier scattering and vortex pinning. Herein, we have investigated the disorder anisotropy to reveal the relation with the in-field superconductivity. The MgB(2 )phase formed by appropriate sintering conditions with carbon doping for high transport critical current performance exhibited a small anisotropy in the strain distribution and a large anisotropy in the crystallite size. The anisotropic behavior reflects small out-of-plane domains of crystallites with the strain distribution. The disordered formation may be the reason why the pi band is usually dirtier than the sigma band. In contrast, although the strain distribution in the in-plane structural state can be selectively tuned by carbon doping, the in-plane crystal growth is still considerably large. Such in-plane crystallization has shortcomings in terms of scattering and pinning. We therefore argue that further selective modification of the disordered structure, especially for the in-plane size properties, is a practical approach to achieve enhancement beyond the currently attainable transport performance. Crown Copyright (C) 2022 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据