4.6 Article

A coarse-grained concurrent multiscale method for simulating brittle fracture

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2022.111898

关键词

-

资金

  1. Provincia Autonoma di Bolzano/Alto Adige - Ripartizione Innovazione, Ricerca, Universita e Musei

向作者/读者索取更多资源

This paper introduces a concurrent multiscale method for modeling crack propagation, which combines the continuum finite element domain with a coarse-grained atomistic potential. This method effectively captures crack formation while reducing computational costs.
This paper proposed a concurrent multiscale method for modeling crack propagation in brittle solids. The method couples the continuum finite element domain with a recently-developed coarse-grained atomistic potential, which has been developed to simulate crack nucleation and propagation within the molecular dynamics domain. The main advantage of this potential is to suppress dislocation nucleation from the crack tip which significantly eases the coupling procedure. In this multiscale framework, complexities like large deformation, crack nucleation and propagation are simulated in the atomistic domain while the rest such as elastic wave propagation and boundary conditions are modeled in the continuum domain. As a result, the atomistic area will be limited around the cracking zone which increases the computational efficiency. Two examples of edge crack propagation and sliding surfaces in contact are presented and compared with the fully atomistic models to verify and check the efficiency of the proposed multiscale method. The comparison shows that the proposed method can accurately capture the crack formation while the computation cost reduces significantly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据