4.7 Article

Exogenous Nitric Oxide Alleviates the Damage Caused by Tomato Yellow Leaf Curl Virus in Tomato through Regulation of Peptidase Inhibitor Genes

期刊

出版社

MDPI
DOI: 10.3390/ijms232012542

关键词

nitric oxide; tomato; transcriptome; TYLCV; resistance induction

资金

  1. National Natural Science Foundation of China [32060401]

向作者/读者索取更多资源

Exogenous NO enhances resistance in tomatoes by regulating peptidase inhibitor genes, reducing virus content and disease index, and improving photosynthesis.
The tomato yellow leaf curl virus (TYLCV) is the causal agent of one of the most severe diseases affecting tomato growth; however, nitric oxide (NO) can mediate plant resistance. This study investigated the molecular mechanism of exogenous NO donor-mediated disease resistance in tomato seedlings. Tomato seedlings were treated with sodium nitroprusside and TYLCV and subjected to phenotypic, transcriptomic, and physiological analyses. The results show that exogenous NO significantly reduced disease index, MDA content, and virus content (71.4%), significantly increased stem length and fresh weight of diseased plants (p < 0.05), and improved photosynthesis with an induction effect of up to 44.0%. In this study, it was found that the reduction in virus content caused by the increased expression of peptidase inhibitor genes was the main reason for the increased resistance in tomatoes. The peptidase inhibitor inhibited protease activity and restrained virus synthesis, while the significant reduction in virus content inevitably caused a partial weakening or shutdown of the disease response process in the diseased plant. In addition, exogenous NO also induces superoxide dismutase, peroxidase activity, fatty acid elongation, resistance protein, lignin, and monoterpene synthesis to improve resistance. In summary, exogenous NO enhances resistance in tomatoes mainly by regulating peptidase inhibitor genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据