4.7 Article

A Short Promoter Region Containing Conserved Regulatory Motifs Is Required for Steroidogenic Acute Regulatory Protein (Star) Gene Expression in the Mouse Testis

期刊

出版社

MDPI
DOI: 10.3390/ijms231912009

关键词

steroidogenesis; testis; transcription; testosterone; Leydig cell; GATA

资金

  1. Canadian Institutes of Health Research (CIHR) [PJT-166131]

向作者/读者索取更多资源

In the testis, Leydig cells produce steroid hormones that are needed for masculinization and spermatogenesis. The study focused on the validation of the regulatory sequences required for the gene expression of STAR in an endogenous context.
In the testis, Leydig cells produce steroid hormones that are needed to masculinize typical genetic males during fetal development and to initiate and maintain spermatogenesis at puberty and adulthood, respectively. Steroidogenesis is initiated by the transfer of cholesterol from the outer to the inner mitochondrial membrane through the action of steroidogenic acute regulatory protein (STAR). Given its importance for the steroidogenic process, the regulation of STAR gene expression has been the subject of numerous studies. These studies have involved the characterization of key promoter sequences through the identification of relevant transcription factors and the nucleotide motifs (regulatory elements) that they bind. This work has traditionally relied on in vitro studies carried out in cell cultures along with reconstructed promoter sequences. While this approach has been useful for developing models of how a gene might be transcriptionally regulated, one must ultimately validate that these modes of regulation occur in an endogenous context. We have used CRISPR/Cas9 genome editing to modify a short region of the mouse Star promoter (containing a subset of regulatory elements, including conserved CRE, C/EBP, AP1, and GATA motifs) that has been proposed to be critical for Star transcription. Analysis of the resultant mutant mice showed that this short promoter region is indeed required for maximal STAR mRNA and protein levels in the testis. Analysis also showed that both basal and hormone-activated testosterone production in mature mice was unaffected despite significant changes in Star expression. Our results therefore provide the first in vivo validation of regulatory sequences required for Star gene expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据