4.5 Review

Gifted microbes for genome mining and natural product discovery

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10295-016-1815-x

关键词

Actinomycetes; antiSMASH 3.0; Burkholderia; Cryptic pathways; Genome mining; Myxobacteria; Natural products; Secondary metabolites; Streptomyces; Uncultured microbes

向作者/读者索取更多资源

Actinomycetes are historically important sources for secondary metabolites (SMs) with applications in human medicine, animal health, and plant crop protection. It is now clear that actinomycetes and other microorganisms with large genomes have the capacity to produce many more SMs than was anticipated from standard fermentation studies. Indeed -90 % of SM gene clusters (SMGCs) predicted from genome sequencing are cryptic under conventional fermentation and analytical analyses. Previous studies have suggested that among the actinomycetes with large genomes, some have the coding capacity to produce many more SMs than others, and that strains with the largest genomes tend to be the most gifted. These contentions have been evaluated more quantitatively by antiSMASH 3.0 analyses of microbial genomes, and the results indicate that many actinomycetes with large genomes are gifted for SM production, encoding 20-50 SMGCs, and devoting 0.8-3.0 Mb of coding capacity to SM production. Several Proteobacteria and Firmacutes with large genomes encode 20-30 SMGCs and devote 0.8-1.3 Mb of DNA to SM production, whereas cultured bacteria and archaea with small genomes devote insignificant coding capacity to SM production. Fully sequenced genomes of uncultured bacteria and archaea have small genomes nearly devoid of SMGCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据