4.7 Article

PSEN2 Thr421Met Mutation in a Patient with Early Onset Alzheimer's Disease

期刊

出版社

MDPI
DOI: 10.3390/ijms232113331

关键词

PSEN2; mutation; early onset AD; risk factors; risk modifiers; whole exome sequencing

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2020R1A2B5B01002463, 2021R1A6A1A03038996]

向作者/读者索取更多资源

A PSEN2 gene mutation related to early onset Alzheimer's disease was identified for the first time in Korea. This mutation may have significant effects on brain function and interact with other mutations to cause the disease.
Presenilin-2 (PSEN2) mutation Thr421Met was identified from a 57-years old patient with early onset Alzheimer's disease (EOAD) for the first time in Korea. Previously, this mutation was discovered in an EOAD patient in Japan without a change on amyloid production from the cellular study. Both Korean and Japanese patients developed the disease in their 50s. Memory loss was prominent in both cases, but no additional clinical information was available on the Japanese patient. Magnetic resonance imaging (MRI) images of the Korean patient revealed asymmetric atrophies in both temporo-parietal lobes. In addition, amyloid positron emission tomography (PET) also revealed amyloid deposits in the gray matter of the temporo-parietal lobes asymmetrically. PSEN2 Thr421 was conserved among a majority of vertebrates (such as zebras, elephants, and giant pandas); hence, Thr421 could play an important role in its functions and any mutations could cause detrimental ramifications in its interactions. Interestingly, PSEN2 Thr421 could have homology with PSEN1 Thr440, as PSEN1 T440del mutations were reported from patients with AD or dementia with Lewy bodies. Hence, the changed amino acid from threonine to methionine of PSEN2 Thr421 could cause significant structural alterations in causing local protein dynamics, leading to its pathogenicity in EOAD. Lastly, PSEN2 Thr421Met may interact with other mutations in neurodegenerative disease related genes, which were found in the proband patient, such as ATP binding cassette subfamily A member 7 (ABCA7), Notch Receptor 3 (NOTCH3), or Leucine-rich repeat kinase 2 (LRRK2). These interactions of pathway networks among PSEN2 and other disease risk factors could be responsible for the disease phenotype through other pathways. For example, PSEN2 and ABCA7 may impact amyloid processing and reduce amyloid clearance. Interaction between PSEN2 and NOTCH3 variants may be associated with abnormal NOTCH signaling and a lower degree of neuroprotection. Along with LRRK2 variants, PSEN2 Thr421Met may impact neurodegeneration through Wnt related pathways. In the future, cellular studies of more than one mutation by CRISPR-Cas9 method along with biomarker profiles could be helpful to understand the complicated pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据