4.7 Article

Manufacturing of fine-grained structures by multilevel kinking mechanism through a novel periodic undulating compression method: An example 7075 aluminum alloy

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2022.103953

关键词

Periodic undulating compression; Multilevel kinking band; Texture; Metal forming

资金

  1. National Natural Science Foundation of China [52275352]

向作者/读者索取更多资源

In this study, a novel approach named periodic undulating compression (PUC) and a multilevel kinking mechanism based on this approach were proposed for the fabrication of large-sized fine-grained materials. Experimental results indicate that PUC can realize multi-pass deformation of large-sized materials and homogeneously accumulate relatively high strain in a single pass deformation. Furthermore, PUC can generate large amounts of kinking bands, which improve the conversion of dislocations to grain boundaries and effectively promote grain refinement.
Combining the advantages of high strength and excellent plasticity, fine-grained bulk materials have gained superiority and potential to manufacture lightweight components. However, the efficient preparation of large-sized fine-grained materials remains a challenge, which further hinders their industrial applications. In this study, a novel approach named periodic undulating compression (PUC) and a multilevel kinking mechanism based on this approach were proposed for the fabrication of large-sized fine-grained materials. Compared with conventional severe plastic deformation (SPD) approaches, PUC can realize multi-pass deformation of large-sized materials without changing the dies and can homogeneously accumulate relatively high strain in a single pass deformation. Furthermore, large amounts of kinking band are generated at 350 degrees C, which improves the conversion of dislocations to grain boundaries, and effectively promotes grain refinement. Due to the complex flow trajectories of materials, and matrix refinement during PUC deformation, the texture intensity can be effectively inhibited with increasing deformation passes. Experimental results indicate that multilevel kinking bands are more efficient at inhibiting the texture intensity than continuous dynamic recrystallization (CDRX). Therefore, the production of ultrafine grained materials for industrial applications is possible with PUC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据