4.8 Article

Self-Powered Electronics by Integration of Flexible Solid-State Graphene-Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 25, 期 16, 页码 2420-2427

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201500335

关键词

-

资金

  1. National Science Foundation [1351785]

向作者/读者索取更多资源

To develop high-capacitance flexible solid-state supercapacitors and explore its application in self-powered electronics is one of ongoing research topics. In this study, self-stacked solvated graphene (SSG) films are reported that have been prepared by a facile vacuum filtration method as the free-standing electrode for flexible solid-state supercapacitors. The highly hydrated SSG films have low mass loading, high flexibility, and high electrical conductivity. The flexible solid-state supercapacitors based on SSG films exhibit excellent capacitive characteristics with a high gravimetric specific capacitance of 245 F g(-1) and good cycling stability of 10 000 cycles. Furthermore, the flexible solid-state supercapacitors are integrated with high performance perovskite hybrid solar cells (pero-HSCs) to build self-powered electronics. It is found that the solid-state supercapacitors can be charged by pero-HSCs and discharged from 0.75 V. These results demonstrate that the self-powered electronics by integration of the flexible solid-state supercapacitors with pero-HSCs have great potential applications in storage of solar energy and in flexible electronics, such as portable and wearable personal devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据