4.7 Article

Experimental and numerical study of heat transfer performance of a channel flow with an inverted flag

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2022.122969

关键词

Flexible vortex generators; Convective heat transfer; Fluid-structure interaction; Inverted flag; Flag mode; Vorticity

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region, China (GRF Project) [17205419, 17203220]

向作者/读者索取更多资源

This study investigates the movement of inverted flags with different thicknesses in a channel flow and finds that the critical flapping velocity can be significantly decreased while maintaining a high level of heat dissipation enhancement.
It has been demonstrated that flexible vortex generators, e.g., flapping flag, can significantly enhance heat transfer inside a heat sink. However, their heat transfer enhancement is only effective when they exhibit flapping behaviors, which require a flow velocity higher than the heat sink working velocity, and thus restraint their application. Minimizing the critical flapping velocity of the flags without sacrificing the heat transfer performance is needed. In this work, we study the cases of inverted flags with different thicknesses in a channel flow. Three flag motion modes are identified by a high-speed camera with increasing flow velocity. In the first mode transition, i.e., the flag starts flapping, the heat dissipation has the highest enhancement. Numerical simulation reveals that compared to the other motion modes, the flapping mode has the strongest average vorticity along the channel wall, leading to the highest heat dissipation among all flag motion modes. Experimental results show that the critical velocity can be as low as 1.5 m/s, at which the heat dissipation enhancement can be as high as 100%. The findings in this work significantly benefit the application of flexible vortex generators in heat sinks, by enabling a decrease in critical velocity and a good enhancement in heat dissipation.(c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据