4.2 Article

A new thermal protective clothing design with silica aerogel filled acrylic nanofibers

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/IJCST-12-2020-0185

关键词

Thermal protective clothing; Firefighter; Silica aerogel; Thermal comfort

向作者/读者索取更多资源

The purpose of this study is to reduce heat stress for firefighters by creating a new fabric design with silica aerogel membrane as a moisture barrier for a three-layer fabric system. The results show that the PAN/silica aerogel membrane can be used to create a lighter fabric system with improved thermal comfort properties compared to traditional protective clothing.
Purpose Firefighters are exposed to high outdoor temperature and heat stress caused by metabolic activities during firefighting and should wear protective clothing to ensure their safety and health. Traditional firefighter protective suits are bulky and heavy garments with reduced thermal comfort properties since the fabric thickness and moisture barrier layers prevent heat transfer of the garment and cause additional heat stress. The aim of this study is to reduce heat stress by creating a new fabric design with silica aerogel membrane as a moisture barrier for three-layer fabric system. Design/methodology/approach Polyacrylonitrile (PAN) nanofibers were produced with three different silica aerogel contents and used for three-layered clothing system as a moisture barrier for giving desired protectiveness and thermal comfort to firefighters. Different fabric combinations were designed using two types of outer shell fabrics, two types of moisture barrier fabrics, two types of thermal barrier fabrics and PAN/silica aerogel membranes. Findings The results show that a lighter fabric system with improved wearer's mobility and thermal comfort properties (thermal resistance and moisture permeability) is achieved with the use of PAN/silica aerogel membrane as an intermediate layer compared to commercial thermal protective fabric systems. Originality/value Differently from traditional thermal protective clothing, which may not provide adequate protection in long-term heat conditions or when exposed to flash fire, a new thermal protective clothing has been developed to be used in extremely hot environments, providing desired technical and performance properties, ease to wear comfort.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据