4.6 Article

Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis

期刊

JOURNAL OF IMMUNOLOGY
卷 198, 期 2, 页码 691-698

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1601649

关键词

-

资金

  1. research foundation of the Multiple Sclerosis Society of Canada
  2. Banque National Fellowship
  3. National Natural Science Foundation [81430035]

向作者/读者索取更多资源

The therapeutic mode of action of dimethyl fumarate (DMF), approved for treating patients with relapsing-remitting multiple sclerosis, is not fully understood. Recently, we and others demonstrated that Ab-independent functions of distinct B cell subsets are important in mediating multiple sclerosis (MS) relapsing disease activity. Our objective was to test whether and how DMF influences both the phenotype and functional responses of disease-implicated B cell subsets in patients with MS. High-quality PBMC were obtained from relapsing-remitting MS patients prior to and serially after initiation of DMF treatment. Multiparametric flow cytometry was used to monitor the phenotype and functional response-profiles of distinct B cell subsets. Total B cell counts decreased following DMF treatment, largely reflecting losses of circulating mature/differentiated (but not of immature transitional) B cells. Within the mature B cell pool, DMF had a greater impact on memory than naive B cells. In keeping with these in vivo effects, DMF treatment in vitro remarkably diminished mature (but not transitional B cell) survival, mediated by inducing apoptotic cell death. Although DMF treatment (both in vivo and in vitro) minimally impacted B cell IL-10 expression, it strongly reduced B cell expression of GM-CSF, IL-6, and TNF-alpha, resulting in a significant anti-inflammatory shift of B cell response profiles. The DMF-mediated decrease in B cell proinflammatory cytokine responses was further associated with reduced phosphorylation of STAT5/6 and NF-kappa B in surviving B cells. Together, these data implicate novel mechanisms by which DMF may modulate MS disease activity through shifting the balance between pro-and anti-inflammatory B cell responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据