4.7 Article

Dual drug delivery system based on layered double hydroxides/carboxymethyl cellulose-poly ethylene oxide bionanocomposite electrospun fibrous mats: Fabrication, characterization, in-vitro and in-vivo studies

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2022.10.087

关键词

Bionanocomposite fibers; Dual drug delivery; Wound healing

向作者/读者索取更多资源

The present study aimed to improve wound healing rate using LDH-VAN/IBU/CMC-PEO bionanocomposite fibrous mats. The fabricated mats showed sustained drug release and no cytotoxicity, and could accelerate the wound healing process.
The main goal of the present project was to design and develop ibuprofen (IBU) and layered double hydroxides-vancomycin (LDH-VAN) nanohybrid loaded bionanocomposite fibrous mats to increase the wound healing rate. Thus, first, LDH-VAN nanohybrid particles was synthesized by in-situ incorporation of VAN into the Mg-Al-LDH interlayers during the co-precipitation of hydroxides. Then, LDH-VAN/IBU/CMC-PEO bionanocomposite fibrous mats were fabricated by electrospinning technique. Test samples were examined XRD, SEM, TEM, TGA, and FTIR. In vitro drug release test was performed in the phosphate buffer solution (pH = 7.4) to prove the efficiency of the fabricated bionanocomposite fibrous mats as a sustained-release carrier for both VAN and IBU. All the fabricated bionanocomposite fibrous mats did not displayed any significant cytotoxicity on NIH/3 T3 fibroblast cells. The wound area in the rats treated with LDH-VAN/IBU/CMC-PEO bionanocomposite fibrous mats was less than other treatment groups. Based on histological analysis, the LDH-VAN/IBU/CMC-PEO bionanocomposite fibrous mats possess a faster wound healing than other nanofibrous mats. Data obtained from the present project indicated that LDH-VAN/IBU/CMC-PEO bionanocomposite fibrous mats could accelerate the wound healing process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据