4.7 Article

Functional characterization of secologanin synthase-like homologous genes suggests their involvement in the biosynthesis of diverse metabolites in the secoiridoid biosynthetic pathway of Camptotheca acuminata Decne

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2022.10.042

关键词

Functional divergence; Secologanin synthase; Homologous genes; Iridoid pathway; Micro-evolution of CYP450s

资金

  1. National Natural Science Foundation of China [42177112, 31970324, 31670604]
  2. Science Research Project of Liaoning Provincial Education Department [LJKZ0553]
  3. Science and Technology Innovation Fund Project of Dalian [LJKMZ20220882]
  4. Scientific Research Fund of Liaoning Provincial Education Department [J2020098]

向作者/读者索取更多资源

The functional characterization of homologous genes involved in plant secondary metabolism reveals functional divergence and redundancy. The study focused on the CYP450 gene family involved in the biosynthesis of Strychnos alkaloid scaffold. Through various analyses, including metabolite profiling, phylogenetic analyses, and biochemistry assays, the researchers identified and characterized five homologous genes. The results showed that certain homologs played a major role in the biosynthesis of specific metabolites, while others had little impact. This study expands our understanding of the functional diversity and divergence of genes involved in secondary metabolism.
The assignment of functions based on homology has recently been challenged by the frequent discovery of functional divergence among homologous gene family members of enzymes involved in plant secondary metabolism. Secologanin synthase (SLS) is the key CYP450 enzyme that acts critically in the biosynthesis of Strychnos alkaloid scaffold. In this study, to fully elucidate the mechanism that underlies metabolic variation, the CYP450 paralogs that participate in oxidative transformation of the secoiridoid pathway were functionally characterized by combining multitiered strategies of metabolite profiling, phylogenetic analyses, biochemistry assays and reverse genetics techniques. Five CaSLSs-like homologous genes were mined and isolated from an integrative multi-omics database of Camptotheca acuminata. Protein sequences, structural comparisons, and phylogenetic analyses confirmed that CaSLS1-2 and CaSLS4-5 were grouped into the SLS clade, and only CaSLS3 clustered into the 7DLH clade. Five homologs, including two previously identified enzymatic genes, were thus designated as CaSLAS1, CaSLAS2, Ca7DLH, CaSLS4 and CaSLS5. Enzymatic assays of the recombinant proteins in yeast showed that CaSLAS1 and CaSLAS2 displayed multi-catalytic activities of SLS, secologanic acid synthase (SLAS) and secoxyloganin synthase (SXS). Additionally, the reactions of CaSLASs enzymes generated stereospecific isomers of secoiridoid products, and a new product of secoxyloganin was observed. CaSLS5, a third SLS enzyme isoform that catalyzes the formation of secologanin, was reported for the first time. However, CaSXS enzymatic activities in vitro had little physiological impact on the biosynthesis of camptothecin (CPT) in Camptotheca acuminata. The primary and secondary roles of CaSLSs-like genes in secoiridoid metabolism were confirmed by virus-induced gene silencing (VIGS) in plant leaves. Efficient silencing and transcriptional downregulation of CaSLAS2, compared with the CaSLAS1 homologs, resulted in a greater reduction of the accumulation of CPT within silenced plants, and CaSLS5 had barely any effect on the contents of metabolites in planta. Thus, CaSLAS2, rather than CaSLAS1, appeared to function as a major participant in the biosynthesis of CPT, and there were redundant functions in the CaSLSs-like enzymes. Consistent with such roles, CaSLAS2 was ubiquitously expressed at very high levels in Camptotheca tissues, and CaSLAS2 was specifically expressed in young leaves. In contrast, CaSLS5 was poorly expressed in every tissue tested. Our findings demonstrate that homologs that belong to the CYP72 gene family are functionally diverse and exhibit divergence and thereby uncover an expanding group of enzymatic genes that determine the chemo-diversity of the iridoid pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据