4.7 Article

Mixed-Isocyanide Complexes of Technetium under Steric and Electronic Control

期刊

INORGANIC CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.2c02730

关键词

-

资金

  1. DFG (Deutsche Forschungsgemeinschaft: Graduated School BI-OQIC)
  2. U.S. National Science Foundation
  3. Alexander von Humboldt Foundation [CHE-1802646]
  4. High-Performance Computing Centre of the Zentraleinrichtung fur Datenverarbeitung of the Freie Universitat Berlin for computational time

向作者/读者索取更多资源

This work successfully achieved the selective exchange of carbonyl ligands and the synthesis of transition metal complexes with mixed isocyanide ligands through the reaction of alkyl isocyanide complexes with sterically encumbered isocyanides. Depending on the steric requirements, the remaining chlorido ligand can be replaced by another isocyanide ligand. The influence of substituents on the reactions was investigated through experimental validation and density functional theory calculations.
Reactions of the alkyl isocyanide fac-[Tc-(CO)3(CNR)2Cl] complexes (2) (CNR = CNnBu or CNtBu) with the sterically encumbered isocyanide CNp-FArDarF2 [DArF = 3,5-(CF3)2C6H3] allow a selective exchange of the carbonyl ligands of 2 and the isolation of the mixed-isocyanide complexes mer,trans- [Tc(CNp-FArDarF2)3(CNR)2Cl] (3). Depending on the steric requirements of the residues R, the remaining chlorido ligand can be replaced by another isocyanide ligand. Cationic complexes such as mer-[Tc(CNp-FArDarF2)3(CNnBu)3]+ (4a) or mer,trans-[Tc-(CNp-FArDarF2)3(CNnBu)2(CNtBu)]+ (6) have been prepared in this way and isolated as their PF6- salts. mer,trans-[Tc(CNp- FArDarF2)3(CNnBu)2(CNtBu)](PF6) represents to the best of our knowledge the first transition-metal complex with three different isocyanides in its coordination sphere. Since the degree of the ligand exchange seems to be controlled both by the electronic and steric measures of the incoming isocyanides, we undertook similar reactions with the sterically less demanding p-fluorophenyl isocyanide, CNPhpF, which indeed readily led to the hexakis(isocyanide)technetium(I) cation through an exchange of all ligands in the staring materials [Tc2(CO)6(mu-Cl)3]- or fac-[Tc(CO)3(CNR)2Cl]. The influence of the substituents at the isocyanide ligands in such reactions has been reasoned with the density functional theory-derived electrostatic potential at the accessible surface of the corresponding isocyanide carbon atoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据