4.7 Article

Magnetoelectric and Magnetostrictive Effects in Scheelite-Type HoCrO4

期刊

INORGANIC CHEMISTRY
卷 61, 期 35, 页码 14030-14037

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.2c02022

关键词

-

资金

  1. Beijing Natural Science Foundation [Z200007]
  2. National Natural Science Foundation of China [11934017, 11921004, 11904392]
  3. National Key R&D Program of China [2021YFA1400300, 2018YFE0103200, 2018YFA0305700]
  4. Chinese Academy of Sciences [XDB33000000]

向作者/读者索取更多资源

Scheelite-type HoCrO4, prepared via pressure treatment of the ambient-pressure zircon-type precursor phase, exhibits a long-range antiferromagnetic phase and can be induced into a metamagnetic state with a moderate magnetic field. It shows a considerable linear magnetoelectric effect and a sharp increase in electric polarization near the critical field of the metamagnetic transition. However, ferromagnetism and ferroelectricity rarely coexist under higher magnetic fields in scheelite-type HoCrO4. The magnetic field also plays a significant role in the longitudinal constriction and magnetostrictive effect of HoCrO4.
Scheelite-type HoCrO4 was prepared by treating the ambient-pressure zircon-type precursor phase under 8 GPa and 700 K. A long-range antiferromagnetic phase transition is found to occur at T-N asymptotic to 23 K due to the spin order of Ho3+ and Cr5+ magnetic ions. However, the antiferromagnetic ground state is sensitive to an external magnetic field and a moderate field of about 1.1 T can induce a metamagnetic transition, giving rise to the presence of a large magnetization up to 8.5 mu(B)/f.u. at 2 K and 7 T. Considerable linear magnetoelectric effect is observed in the antiferromagnetic state, while the induced electric polarization experiences a sharp increase near the critical field of the metamagnetic transition. Ferromagnetism and ferroelectricity thus rarely coexist under higher magnetic fields in scheelite-type HoCrO4. Moreover, a magnetic field also plays an important role in the longitudinal constriction of HoCrO4, and a significant magnetostrictive effect with a value of up to 300 ppm is observed at 2 K and 9 T, which can be attributed to the strong anisotropy of the rare-earth Ho3+ ion. Possible coupling between magnetoelectric and magnetoelastic effects is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据