4.7 Article

Metabolomic association analysis reveals defense related secondary metabolic reprogramming in callus of Scutellaria baicalensis Georgi induced by endophytic Pseudomonas sp. 2B

期刊

INDUSTRIAL CROPS AND PRODUCTS
卷 187, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.indcrop.2022.115409

关键词

Scutellaria baicalensis Georgi; Endophyte; Secondary metabolic reprogramming; Metabolome; Flavonoid

资金

  1. National Natural Science Foundation of China [82003885]

向作者/读者索取更多资源

Interactions between Scutellaria baicalensis and endophytic Pseudomonas sp. 2B can alter the secondary metabolism of S. baicalensis, which has potential applications in biocontrol for cultivation of S. baicalensis.
Interactions between plants and endophyte can influence the secondary metabolism in host plants. Scutellaria baicalensis Georgi, is widely used as traditional Chinese medicine and cultivated extensively in China. Until now, the influence of endophytes on secondary metabolism of S. baicalensis is still unclear. To address this issue, nontargeted metabolomics tool was performed to explore the global secondary metabolic changes in S. baicalensis with a dual culture of callus and endophytic Pseudomonas sp. 2B. Further, the activity of polyphenol oxidase (PPO) and the expression patterns of key genes in flavonoid biosynthesis pathway were detected. Through the analysis of non-targeted metabolomics, a total of 1814 differential metabolites were found and the identified differential metabolites were mainly belonged to flavonoids, anthraquinones, lignin and phenylethanoids. The target quantitative analysis revealed that the contents of baicalin and wogonoside decreased in callus of S. baicalensis co-cultured with Pseudomonas sp. 2B, but the accumulations of baicalein, wogonin and chrysin were promoted. The activity of PPO was also increased in this process. Furthermore, there was a significant decrease in flavone synthase (sbFNS II-2) and chalcone synthase (sbCHS2) transcripts in dual culture of endophyte-callus. The expression of cinnamic acid-specific coenzyme A ligase (sbCLL7) and the UDP-glucuronate baicalein 7-O-glucuronosyltransferase (sbUBGAT) transcripts were promoted. The results demonstrated that endophytic Pseudomonas sp. 2B could reprogram defense related secondary metabolism in S. baicalensis and had a potential application value in biocontrol for cultivation of S. baicalensis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据