4.7 Article

Multimode ultrasound and ternary deep eutectic solvent sequential pretreatments enhanced the enzymatic saccharification of corncob biomass

期刊

INDUSTRIAL CROPS AND PRODUCTS
卷 188, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.indcrop.2022.115574

关键词

Ternary deep eutectic solvent; Corncob; Pretreatment; Hydrolysis; Ultrasound

资金

  1. National Natural Science Foundation of China [32072174]

向作者/读者索取更多资源

This study investigated the sequential pretreatment of corn cob (CB) using ultrasound (US) in conjunction with ternary deep eutectic solvent (TDES). The results showed that under the optimized conditions, the removal of lignin and hemicellulose from CB was achieved, and the recovery of cellulose was significantly improved. After enzymatic hydrolysis, the yield of glucose and xylose were higher compared to the untreated samples. The scanning electron microscopy, X-ray diffraction, and Fourier transform mid-infrared spectroscopy results further confirmed the effectiveness of the pretreatment method.
Corncob (CB) is a valuable agricultural waste in high abundance. It is mainly composed of cellulose, hemicellulose and lignin that link in a complex interlocking matrix. The key to its utilization depends on separating cellulose from lignin and hemicellulose using an environment-friendly and effective pretreatment method to improve glucose yield. The study aimed to investigate the effect of sequential pretreatment of CB with ultrasound (US) in conjunction with ternary deep eutectic solvent (TDES). The US, type and molar ratio of TDES, temperature, and time were optimized. The results showed that under the optimum conditions, US (40 +60 kHz, 60 min) + TDES (ChCl-Gly-LA, 1:1:2, 120 degrees C, 3 h), the removal of lignin and hemicellulose were 87.54 % and 67.00 %, respectively, and the recovery of cellulose was 82.18 %. After 72 h of enzymatic hydrolysis, the yield of glucose and xylose were 76.94 % and 41.26 %, respectively. Comparatively, pretreated CB yielded 61.58 % glucose and 26.90 % xylose higher than the untreated. Scanning electron microscopy revealed that the surface of the CB became cracked and rugged. X-ray diffraction showed that the CrI increased significantly from 36 % to 59 %. Fourier transform mid-infrared spectroscopy indicated significant changes in the characteristic functional groups of lignin and hemicellulose. Increases in Tonset, Tendset, Tp, Vmax and decreases in Char at 600 degrees C all corresponded to increases in thermal stability. These results further confirmed that TDES combined with ultrasonic pretreatment effectively removed lignin and hemicellulose. In conclusion, this approach could greenly and efficiently pretreat CB as a new method for biomass pretreatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据