4.6 Article

Cell-Extrinsic TNF Collaborates with TRIF Signaling To Promote Yersinia-Induced Apoptosis

期刊

JOURNAL OF IMMUNOLOGY
卷 197, 期 10, 页码 4110-4117

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1601294

关键词

-

资金

  1. National Institutes of Health [AI103062, AI109267]
  2. Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease Award
  3. Training Program in Rheumatic Diseases Grant [T32-AR007442]

向作者/读者索取更多资源

Innate immune responses that are crucial for control of infection are often targeted by microbial pathogens. Blockade of NF-kappa B and MAPK signaling by the Yersinia virulence factor YopJ inhibits cytokine production by innate immune cells but also triggers cell death. This cell death requires RIPK1 kinase activity and caspase-8, which are engaged by TLR4 and the adaptor protein TRIF. Nevertheless, TLR4-and TRIF-deficient cells undergo significant apoptosis, implicating TLR4/TRIF-independent pathways in the death of Yersinia-infected cells. In this article, we report a key role for TNF/TNFR1 in Yersinia-induced cell death of murine macrophages, which occurs despite the blockade of NF-kappa B and MAPK signaling imposed by Yersinia on infected cells. Intriguingly, direct analysis of YopJ injection revealed a heterogeneous population of injection-high and injection-low cells, and demonstrated that TNF expression came from the injection-low population. Moreover, TNF production by this subpopulation was necessary for maximal apoptosis in the population of highly injected cells, and TNFR-deficient mice displayed enhanced susceptibility to Yersinia infection. These data demonstrate an important role for collaboration between TNF and pattern recognition receptor signals in promoting maximal apoptosis during bacterial infection, and demonstrate that heterogeneity in virulence factor injection and cellular responses play an important role in promoting anti-Yersinia immune defense.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据