4.8 Article

Automatic Resonance Tuning With ON/OFF Soft Switching for Push-Pull Parallel-Resonant Inverter in Wireless Power Transfer

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 37, 期 9, 页码 10133-10138

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2022.3168978

关键词

Zero voltage switching; Pulse width modulation; Stress; Tuning; Switches; MOSFET; Capacitors; Push-pull parallel resonant inverter; variable capacitor; wireless power transfer

资金

  1. Incheon National University [2019-0416]
  2. National Research Foundation [2019R1F1A1063121]
  3. National Research Foundation of Korea [2019R1F1A1063121] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study proposes a tunable resonant tank and its control method for push-pull parallel-resonant inverter in wireless power transfer application. Real-time tuning maximizes output power and guarantees soft switching. This method achieves higher efficiency compared to conventional switch-controlled capacitor.
This letter proposes the tunable resonant tank and its control method for push-pull parallel-resonant inverter in wireless power transfer application. The parallel tuning capacitor is controlled using pulsewidth modulation, and its duty cycle is determined by the sensing of drain voltage waveshape. Soft switching is ensured at both the turn-on and turn-off for every switches in the proposed inverter: zero voltage turn-on and low dv/dt turn-off. The real-time tuning minimizes the voltage stress on switches and maximizes the output power, and guarantees soft switching regardless of detuning of parallel-resonant inverter. The voltage stress on the tunable element is lower than the stress on the main inverter part. Moreover, all the mosfets are connected to ground. Hence, the mosfets do not experience large resonant voltage swing across negative and positive levels. These also simplify the gate driving circuitry. The proposed tuning achieves higher efficiency than conventional switch-controlled capacitor due to the elimination of back-to-back two-series mosfets. The measurement verifies that the proposed method achieves maximum 1.96 times higher output power and 15.86% higher efficiency with the same voltage stress on switches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据