4.8 Article

Adaptation of a Solid-State Marx Modulator for Electroactive Polymer

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 37, 期 11, 页码 13014-13021

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2022.3183437

关键词

MOSFET; Generators; Capacitors; High-voltage techniques; Discharges (electric); Modulation; Wireless communication; Dielectric elastomer; electroactive polymer; high-voltage; marx generator; voltage multiplier

资金

  1. Werner Siemens Foundation
  2. French National agency [ANR-20-CE05-0044]

向作者/读者索取更多资源

Electroactive polymers have promising characteristics for application in cardiac assist devices, but the high access resistance and the need for efficient voltage supply switching and wireless communication and power transfer systems pose challenges.
Electroactive polymers show promising characteristics, such as lightness, compactness, flexibility, and large displacements, making them a candidate for application in cardiac assist devices. This revives the need for quasi-square wave voltage supply switching between 0 and several kilovolts, that must be efficient, to limit the heat dissipation, and compact in order to be implanted. The high- access resistance, associated with compliant electrodes, represents an additional difficulty. Here, a solid-state Marx modulator is adapted to cope with electroactive polymer characteristics, taking advantage of an efficient energy transfer over a sequential multistep charge/discharge process. To ensure compactness, efficiency, as well as the needs of an implanted device, a wireless magnetic field-based communication and power transfer system has been implemented. This work demonstrates the benefit of this design through simulations and experimental validation on a cardiac assist device. At a voltage of 7 kV, an efficiency of up to 88% has been achieved over a complete charge/discharge cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据