4.5 Article

Design and Modeling of Bioreactor Utilizing Electrophoresis and Di-Electrophoresis Techniques for Regenerating Reabsorption Function of Human Kidney PCT in Microfluidics Environment

期刊

IEEE TRANSACTIONS ON NANOBIOSCIENCE
卷 21, 期 4, 页码 529-541

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNB.2021.3131351

关键词

Kidney; Microfluidics; Electric potential; Diseases; Fluids; Biomembranes; Electric fields; Proximal convoluted tubule; artificial kidney; kidney-on-chip; electrophoresis; di-electrophoresis

资金

  1. National Institute of Technology Silchar

向作者/读者索取更多资源

This study designs a fully artificial and highly controllable bioreactor to mimic the reabsorption function of the kidney. By utilizing electrophoresis and dielectrophoresis techniques, the bioreactor achieves a reabsorption rate similar to the proximal convoluted tubule of the normal human kidney. Dielectrophoresis proves to be more efficient in realizing the bioreactor.
The need for innovation in medical device technology is immense; especially to replace dialysis techniques the necessity is extremely high. Available techniques that promised to replace dialysis have not yet geared up to the marketization level. The utilization of live kidney cells makes these devices costly, delicate, and unreliable. This paper aims to design a bioreactor to mimic the reabsorption function of the kidney that is fully artificial and highly controllable, which can be one step forward to the emerging Kidney-on-Chip (KOC) technology. The additional benefit of the proposed design is that it utilizes size-dependent reabsorption along with charge-dependent reabsorption phenomena to make it more compatible with human kidney function. The electrophoresis (EP), and di-electrophoresis (DEP) techniques are utilized to mimic the reabsorption function in this report. The structure utilized in the present design exactly replicates the proximal convoluted tubule (PCT) dimensions and functions as well. The whole setup is implemented in the COMSOL Multiphysics FEM benchmark tool for simulation, and analysis with appropriate boundary conditions. The device when excited by an electric field, Electrophoresis has produced a maximum velocity of 1.07 m/s for DC excitation and di-electrophoresis has produced a maximum flow velocity of 1.23 m/s, where both the offset voltages are the same (0.7 V). The flow velocity obtained utilizing both EP and DEP produced a reabsorption rate of 50-58% depending on the voltage applied and dimensions considered which is close to 60% reabsorption rate of the normal human kidney PCT. In accordance with the outcomes produced, the di-electrophoresis technique proved to be more efficient in realizing bioreactor as compared to electrophoresis. The novelty of the present work lies in the creation of a simulation environment, rigorous analysis, and optimization of the bioreactor supported by compact mathematical model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据