4.6 Article

Multilevel 3-D Device Simulation Approach Applied to Deeply Scaled Nanowire Field Effect Transistors

期刊

IEEE TRANSACTIONS ON ELECTRON DEVICES
卷 69, 期 9, 页码 5276-5282

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2022.3188945

关键词

Drift diffusion (DD); Monte Carlo (MC); nanowire (NW); semiconductor device simulation; tight-binding (TB)

资金

  1. Spain's Ministerio de Ciencia e Innovacion/Xunta deGalicia/European Regional Development Fund [RYC-2017-23312, PID2019-104834GB-I00, ED431F-2020/008]
  2. Spain's Ministerio de Ciencia, Innovacion y Universidades [RTI2018-097876-B-C21]

向作者/读者索取更多资源

In this study, three silicon nanowire field effect transistors were simulated using hierarchical multilevel quantum and semiclassical models, and verified against experimental characteristics. The research demonstrates the significant impact of accurate parameterization of band structure and quantum confinement on the computed characteristics of nanoscaled devices.
Three silicon nanowire (SiNW) field effect transistors (FETs) with 15-, 12.5- and 10.6-nm gate lengths are simulated using hierarchical multilevel quantum and semiclassical models verified against experimental I-D-V-G characteristics. The tight-binding (TB) formalism is employed to obtain the band structure in k-space of ellipsoidal NWs to extract electron effective masses. The masses are transferred into quantum-corrected 3-D finite element (FE) drift-diffusion (DD) and ensemble Monte Carlo (MC) simulations, which accurately capture the quantum-mechanical confinement of the ellipsoidal NW cross sections. We demonstrate that the accurate parameterization of the bandstructure and the quantum-mechanical confinement has a profound impact on the computed I-D-V-G characteristics of nanoscaled devices. Finally, we devise a step-by-step technology computer-aided design (TCAD) methodology of simple parameterization for efficient DD device simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据