4.7 Article

EDFLOW: Event Driven Optical Flow Camera With Keypoint Detection and Adaptive Block Matching

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCSVT.2022.3156653

关键词

Dynamic vision sensor; FPGA; near-sensor processing

资金

  1. Swiss National Centre of Competence in Research Robotics (NCCR Robotics)

向作者/读者索取更多资源

This paper proposes a DVS+FPGA camera platform and demonstrates the hardware implementation of event-based corner keypoint detection and adaptive block-matching optical flow. The platform has advantages such as low latency, sparse output, and high dynamic range.
Event cameras such as the Dynamic Vision Sensor (DVS) are useful because of their low latency, sparse output, and high dynamic range. In this paper, we propose a DVS+FPGA camera platform and use it to demonstrate the hardware implementation of event-based corner keypoint detection and adaptive block-matching optical flow. To adapt sample rate dynamically, events are accumulated in event slices using the area event count slice exposure method. The area event count is feedback controlled by the average optical flow matching distance. Corners are detected by streaks of accumulated events on event slice rings of radius 3 and 4 pixels. Corner detection takes about 6 clock cycles (16 MHz event rate at the 100MHz clock frequency) At the corners, flow vectors are computed in 100 clock cycles (1 MHz event rate). The multiscale block match size is 25 x 25 pixels and the flow vectors span up to 30-pixel match distance. The FPGA processes the sum-of-absolute distance block matching at 123 GOp/s, the equivalent of 1230 Op/clock cycle. EDFLOW is several times more accurate on MVSEC drone and driving optical flow benchmarking sequences than the previous best DVS FPGA optical flow implementation, and achieves similar accuracy to the CNN-based EV-Flownet, although it burns about 100 times less power. The EDFLOW design and benchmarking videos are available at https://sites.google.com/view/edflow21/home.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据