4.8 Article

A Hybrid Material Approach Toward Solution-Processable Dielectrics Exhibiting Enhanced Breakdown Strength and High Energy Density

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 25, 期 23, 页码 3505-3513

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201501070

关键词

dielectrics; energy density; energy storage; ferroelectric polymers; organic-inorganic hybrids

资金

  1. US Office of Naval Research [N00014-11-1-0342]

向作者/读者索取更多资源

The ever-increasing demand for compact electronics and electrical power systems cannot be met with conventional dielectric materials with limited energy densities. Numerous efforts have been made to improve the energy densities of dielectrics by incorporating ceramic additives into polymer matrix. In spite of increased permittivities, thus-fabricated polymer nanocomposites typically suffer from significantly decreased breakdown strengths, which preclude a substantial gain in energy density. Herein, organic-inorganic hybrids as a new class of dielectric materials are described, which are prepared from the covalent incorporation of tantalum species into ferroelectric polymers via in situ sol-gel condensation. The solution-processed hybrid with the optimal composition exhibits a Weibull breakdown strength of 505 MV m(-1) and a discharged energy density of 18 J cm(-3), which are more than 40% and 180%, respectively, greater than the pristine ferroelectric polymer. The superior performance is mainly ascribed to the deep traps created in the hybrids at the molecular level, which results in reduced electric conduction and lower remnant polarization. Simultaneously, the formation of the cross-linked networks enhances the mechanical strengths of the hybrid films and thus hinders the occurrence of the electromechanical breakdown. This work opens up new opportunities to solution-processed organic materials with high energy densities for capacitive electrical energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据