4.7 Article

Proximal sensor data fusion and auxiliary information for tropical soil property prediction: Soil texture

期刊

GEODERMA
卷 422, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2022.115936

关键词

pXRF; Vis-NIR; NixPro (TM); Machine learning; Prediction models; Tropical soils

资金

  1. National Council for Scientific and Technological Development (CNPq)
  2. Coordination for the Improvement of Higher Education Personnel (CAPES)
  3. Foundation for Research of the State of Minas Gerais (FAPEMIG)

向作者/读者索取更多资源

This study evaluated the use of proximal sensor data via random forest algorithm for predicting soil particle size fractions and soil textural classes in tropical regions. The results showed that pXRF data were crucial for accurate soil texture prediction. The use of proximal sensors can provide rapid and accurate assessment of soil texture, supporting agronomic and environmental strategies in Brazilian conditions.
Soil texture is a primary variable influencing many soil chemical-physical-biological processes, providing important information for decision-making regarding sustainable soil management. The standard traditional methods for determining soil texture, however, are performed manually and are time-consuming, costly, and generate chemical wastes. As an alternative, portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared spectroscopy (Vis-NIR) have been increasingly used worldwide to predict soil attributes. Other sensors (e.g., NixPro (TM) color sensor) are also promising, but less evaluated to date. Thus, investigations towards proximal sensor data fusion for prediction of soil textural separates (clay, silt, and total, coarse, and fine sand contents) and soil textural classes (loam, loamy sand, etc) in tropical soils are rare. Therefore, this study aimed to evaluate proximal sensor data for predicting soil particle size fractions and soil textural classes (both Family particle size classes and USDA soil texture triangle) via random forest algorithm in tropical regions. A total of 464 soil samples were collected from A (n = 208) and B (n = 256) horizons in Brazil. Soil samples were submitted to laboratory analyses for soil texture and proximal sensor (pXRF, Vis-NIR, and NixPro (TM)) scanning. Samples were randomly split into 70% for modeling and 30% for validation. The best approach varied according to the predicted attribute; however, pXRF data were key information for soil texture prediction accuracy. The best results delivered highly accurate predictions via the aforementioned proximal sensors for rapid assessment of soil texture (total sand R-2 = 0.84, RMSE = 7.60%; silt 0.83, 6.11%; clay 0.90, 5.64%; coarse sand 0.87, 6.30%; fine sand 0.82, 5.27%). Categorical prediction accuracy for soil textural classes (Family particle size classes, overall accuracy = 0.97, Kappa index = 0.95; USDA soil texture triangle, 0.83, 0.73) was enhanced when the predictions were made by soil order sub-datasets. Smoothed Vis-NIR preprocessing and dry NixPro (TM) color data positively influenced the results. The results reported here represent alternatives for reducing costs and time needed for evaluating soil texture, supporting agronomic and environmental strategies in Brazilian conditions. Further works should extend the results of this study to temperate regions to corroborate the conclusions presented herein regarding the fusion of these three proximal sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据