4.2 Article

TBK1 inhibitors enhance transfection efficiency by suppressing p62/SQSTM1 phosphorylation

期刊

GENES TO CELLS
卷 28, 期 1, 页码 68-77

出版社

WILEY
DOI: 10.1111/gtc.12987

关键词

gene delivery; p62; p62 phosphorylation; selective autophagy; TBK1; TBK1 inhibitor

向作者/读者索取更多资源

DNA transfection efficiency can be improved by inhibiting the phosphorylation process of p62 by TBK1, which reduces the intracellular degradation of transfected DNA.
DNA transfection is an essential technique in the life sciences. Non-viral transfection reagents are widely used for transfection in basic science. However, low transfection efficiency is a problem in some cell types. This low efficiency can be primarily attributed to the intracellular degradation of transfected DNA by p62-dependent selective autophagy, specifically by p62 phosphorylated at the S403 residue (p62-S403-P). To achieve efficient DNA transfection, we focused on a phosphorylation process that generates p62-S403-P and investigated whether inhibition of this process affects transfection efficiency. One of the kinases that phosphorylate p62 is TBK1. The TBK1 gene depletion in murine embryonic fibroblast cells by genome editing caused a significant reduction or loss of p62-S405-P (equivalent to human S403-P) and enhanced transfection efficiency, suggesting that TBK1 is a major kinase that phosphorylates p62 at S403. Therefore, TBK1 is a viable target for drug treatment to increase transfection efficiency. Transfection efficiency was enhanced when cells were treated with one of the following TBK1 inhibitors BX795, MRT67307, or amlexanox. This effect was synergistically improved when the two inhibitors were used in combination. Our results indicate that TBK1 inhibitors enhanced transfection efficiency by suppressing p62 phosphorylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据