4.7 Article

Engineering hollow mesoporous silica supported cobalt molybdate catalyst by dissolution-regrowth strategy for efficiently aerobic oxidative desulfurization

期刊

FUEL
卷 325, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2022.124755

关键词

Aerobic oxidative desulfurization; Dissolution-regrowth strategy; CoMoO4; In situ loading

资金

  1. National Natural Science Foundation of China [21978119, 22078135]
  2. Natural Science Foundation of Hainan Province [220CXTD436]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

A hollow mesoporous silica nanosphere supported cobalt molybdate catalyst was prepared using a dissolution-regrowth strategy, which exhibited outstanding desulfurization efficiency in oxidative desulfurization and could be reused.
Heterogeneous catalysts show superior separable and recyclable property in comparison with homogeneous catalysts. However, the conventional synthetic method faces the problem of uneven distribution of active sites. Here, a facile dissolution-regrowth strategy was developed to prepare hollow mesoporous silica nanospheres supported cobalt molybdate (CoMoO4/HMS) under mild conditions, simultaneously, CoMoO4 was obtained in situ. The homogenous dispersion of the active species made the catalyst manifest an outstanding desulfurization efficiency in aerobic oxidative desulfurization compared with the supported single-metal oxides catalysts or supported CoMoO4 catalyst prepared by wet impregnation. The removal efficiency of three sulfur-containing substances, such as dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, could reach 100% by 5 h with molecular oxygen as an oxidant. Besides, the sulfur removal of DBT almost did not reduce after at least 8 cycles under the optimal reaction conditions. Through electron spin resonance spectroscopy and radical quenching experiments, O-2(center dot-) was determined as the main active oxygen species for sulfur oxidation. This dissolution-regrowth strategy can be used to prepare a series of supported multi-metal oxides for various applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据