4.7 Article

Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation

期刊

FOOD HYDROCOLLOIDS
卷 131, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2022.107824

关键词

SPI emulsion gel inks; 3D printing; Polysaccharide; Printability; Rheological properties; Microstructure

资金

  1. National Key R & D Program of China [2021YFD2101000]

向作者/读者索取更多资源

This study investigates the use of soy protein isolate (SPI) emulsion gel inks mixed with guar gum (GG) or xanthan gum (XG) for 3D printing. The influence of polysaccharide type and concentration on the printability, rheological properties, and microstructure of the inks is discussed.
Soy protein isolate (SPI) emulsion gel inks with polysaccharides of guar gum (GG) or xanthan gum (XG) for extrusion-based three-dimensional (3D) printing were investigated. The effects of the polysaccharide type and concentration on the printability, rheological properties, and microstructure of inks were discussed. Results indicated that the 3D printed products of SPI-GG0.5 inks demonstrated low dimensional printing deviation with great self-supporting capability and smooth and slightly flawed surface texture, while SPI-XG0.5 inks had the highest hardness and rough surface texture. The results of small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test proved that SPI-XG0.5 inks exhibited the maximal gel strength, providing its 3D printed products with highest hardness. Secondary loops of Lissajous plots wouldn't emerge in SPI-XG0.5 inks, indicating decreased network flexibility and slightly larger dimensional printing deviation. The microstructure and fourier transform infrared (FTIR) analysis suggested the interaction of SPI with XG was stronger than that of GG due to hydrogen bonding and electrostatic interactions. When the XG concentration reached 0.5%, the network structure of the inks was changed, resulting in a rough surface texture of the 3D printed product. There are few studies on 3D printing of SPI emulsion gels, and this research offers more possibilities for the development of 3D printing inks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据