4.5 Article

Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation

期刊

JOURNAL OF HYDROMETEOROLOGY
卷 17, 期 11, 页码 2853-2874

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JHM-D-16-0028.1

关键词

-

资金

  1. National Aeronautics and Space Administration [NNX11AJ43G]
  2. National Natural Science Foundation of China [91337217]
  3. National Science Foundation [M0856145]

向作者/读者索取更多资源

This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T-B at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T-B based on their correlations with the prior T-B (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171 m RMSE), the overall snow depth estimates are improved by 1.6% (0.168 m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177 m RMSE). Significant improvement of the snow depth estimates in the rule-based RA is observed for tundra snow class (11.5%,p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据