4.8 Article

Singlet Oxygen Seasonality in Aqueous PM10 is Driven by Biomass Burning and Anthropogenic Secondary Organic Aerosol

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 56, 期 22, 页码 15389-15397

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.2c04554

关键词

singlet oxygen; brown carbon; photochemistry; organic aerosols; atmospheric chemistry

资金

  1. Swiss National Science Foundation
  2. [PZ00P2_79703]

向作者/读者索取更多资源

This study investigates the spatiotemporal distribution of singlet-state oxygen (1O2) in organic aerosols (OA) through analyzing PM10 extracts in two locations in Switzerland. The results show that 1O2 concentration exhibits a seasonal variation, with a peak in wintertime. Biomass burning and anthropogenic secondary OA are identified as the main drivers for 1O2 formation. Furthermore, an empirical fit is developed to estimate 1O2 concentrations based on PM10 components.
The first excited state of molecular oxygen is singlet -state oxygen (1O2), formed by indirect photochemistry of chromophoric organic matter. To determine whether 1O2 can be a competitive atmospheric oxidant, we must first quantify its production in organic aerosols (OA). Here, we report the spatiotemporal distribution of 1O2 over a 1-year dataset of PM10 extracts at two locations in Switzerland, representing a rural and suburban site. Using a chemical probe technique, we measured 1O2 steady-state concentrations with a seasonality over an order of magnitude peaking in wintertime at 4.59 +/- 0.01 x 10-13 M and with a quantum yield of up to 2%. Next, we identified biomass burning and anthropogenic secondary OA (SOA) as the drivers for 1O2 formation in the PM10 aqueous extracts using source apportionment data. Importantly, the quantity, the amount of brown carbon present in PM10, and the quality, the chemical composition of the brown carbon present, influence the concentration of 1O2 sensitized in each extract. Anthropogenic SOA in the extracts were 4 times more efficient in sensitizing 1O2 than primary biomass burning aerosols. Last, we developed an empirical fit to estimate 1O2 concentrations based on PM10 components, unlocking the ability to estimate 1O2 from existing source apportionment data. Overall, 1O2 is likely a competitive photo-oxidant in PM10 since 1O2 is sensitized by ubiquitous biomass burning OA and anthropogenic SOA. Atmospheric 'O2 production from PM70extracts 5 x10.13 rural suburban winter summer winter summer predicted contribution from biomass burning OA predicted contribution from anthropogenic SOA measured with chemical probe 4 3 rn N o 2 1 0

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据