4.8 Article

Microbial Electrosynthesis of Acetate Powered by Intermittent Electricity

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.2c05085

关键词

acetogen; Thermoanaerobacter kivui; product inhibition; microbial electrosynthesis; cathodic hydrogen-mediated electron uptake

向作者/读者索取更多资源

This study investigates the impact of intermittent electricity supply on the performance of hydrogen mediated acetate electrosynthesis, and finds that the accumulation of acetic acid and current interruptions affect the recovery. However, supplying a low background current can mitigate the effects of current interruptions on subsequent MES performance.
Microbial electrosynthesis (MES) of acetate is a process using electrical energy to reduce CO2 to acetic acid in an integrated bioelectrochemical system. MES powered by excess renewable electricity produces carbon-neutral acetate while benefitting from inexpensive but intermittent energy sources. Interruptions in electricity supply also cause energy limitation and starvation of the microbial cells performing MES. Here, we studied the effect of intermittent electricity supply on the performance of hydrogen mediated MES of acetate. Thermoanaerobacter kivui produced acetic acid for more than 4 months from intermittent electricity supplied in 12 h on-off cycles in a semicontinuously-fed MES system. After current interruptions, hydrogen utilization and acetate synthesis rates were severely diminished. They did not recover to the steady-state rates of continuous MES within the 12 h current-on period under most conditions. Accumulating high product (acetate) concentration exacerbated this effect and prolonged recovery. However, supply of a low background current of 1-5% of the maximum current during off-times reduced the impact of current interruptions on subsequent MES performance. This study presents sustained MES at a rate of up to 2 mM h-1 acetate at an average concentration of 60-90 mM by a pure thermophilic microbial culture powered by intermittent electricity. We identified product inhibition of accumulating acetic acid as a key challenge to improving the efficiency of intermittently powered MES.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据