4.7 Article

Hydrogeology and geochemistry of low-permeability. oil-shales - Case study from HaShfela sub-basin, Israel

期刊

JOURNAL OF HYDROLOGY
卷 540, 期 -, 页码 1105-1121

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2016.07.026

关键词

Oil shale; Low hydraulic conductivity; Slug tests: Kozeny-Carman approach; Resistivity logs; Flow Zone Indicator (FZI)

向作者/读者索取更多资源

Low permeability rocks are of great importance given their potential role in protecting underlying aquifers from surface and buried contaminants. Nevertheless, only limited data for these rocks is available. New appraisal wells drilled into the oil shale unit (OSU) of the Mt. Scopus Group in the HaShfela sub-basin, Central Israel, provided a one-time opportunity for detailed study of the hydrogeology and geochemistry of this very low permeability unit. Methods used include: slug tests, electrical logs, televiewer imaging, porosity and permeability measurements on core samples, chemical analyses of the rock column and groundwater analyses. Slug tests yielded primary indication to the low permeability of the OSU despite its high porosity (30-40%). Hydraulic conductivities as low as 10(-10)-10(-12) m/s were calculated, using both the Hvorslev and Cooper-Bredehoeft-Papadopulos decoding methods. These low conductivities were confirmed by direct measurements of permeability in cores, and from calculations based on the Kozeny-Carman approach. Storativity was found to be 1 . 10(-6) and specific storage - 3.8 . 10(-9) m(-1). Nevertheless, the very limited water flow in the OSU is argued to be driven gravitationally. The extremely slow recovery rates as well as the independent recovery of two adjacent wells, despite their initial large head difference of 214 m, indicate that the natural fractures are tight and are impermeable due to the confining stress at depth. Laboratory measured permeability is similar or even higher than the field-measured values, thereby confirming that fractures and bedding planes do not form continuous flow paths. The vertical permeability along the OSU is highly variable, implying hydraulic stratification and extremely low vertical hydraulic conductivity. The high salinity of the groundwater (6300-8000 mgCl/L) within the OSU and its chemical and isotopic compositions are explained by the limited water flow, suggesting long residence time of the water, prolonged water-rock interaction and mixing with ancient trapped salty water. The current study demonstrates that targeted and detailed research of low permeability rocks can produce reliable hydraulic parameters using slug tests and accompanying methods. The data produced is of upmost importance for quantitative risk evaluations such as models for waste burial in low permeability units. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据