4.7 Article

Removal mechanisms of Cd from water and soil using Fe-Mn oxides modified biochar

期刊

ENVIRONMENTAL RESEARCH
卷 212, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.113406

关键词

Fe-Mn oxides Modification; Precipitation; Cd contamination; Biomass feedstocks

向作者/读者索取更多资源

In this study, two functional biochar materials were prepared and demonstrated to be effective in removing Cd from water and stabilizing Cd in alkaline soil, thus reducing the risk of Cd entering the food chain.
The development of remediation materials simultaneously suitable for Cd-contaminated water and soil is of great significance. In this study, the functional biochar (FM-RBC and FM-DBC) was prepared using branch and durian shell biochar (RBC and DBC, respectively) with iron-manganese oxide (Fe-Mn oxide) modification. The behaviors and mechanisms of Cd adsorption and stabilization in water and alkaline soil treated with FM-RBC and FM-DBC were explored. The results showed that the adsorption capacities of RBC and DBC for Cd had increased by 40-80 mg/g after the Fe-Mn oxide modification. The Cd adsorption was conformed to pseudo-second-order kinetic and the Langmuir isothermal models. After 35 days of soil cultivation, the maximum reduction rate of DTPA-Cd occurred in 3% FM-DBC treatments (37.73%), followed by in 3% FM-RBC (30.08%), all of which were significantly higher than that observed in 3% BC treatments (12.55-18.91%). Notably, the FM-RBC and FM-DBC treatments promoted the conversion of the exchangeable to the carbonate-bound and Fe/Mn oxyhydroxide fractions of Cd. The XRD, FTIR, and XPS analyses demonstrated that the loading amount of Fe-Mn oxide was positively correlated with the oxygen-containing functional group of biochar. CdO, Cd2Mn(3)O(8) and CdCO3 were loaded on the FM-BC, indicating the existence of two main adsorption mechanisms: (1) the complexation with MO (M: Fe, Mn) and acid oxygen-containing functional groups, (2) the precipitation with carbonate of Cd. In this work, we prepared two functional biochar that rapidly removes Cd from water and effectively fixes Cd in alkaline soil, thus, debasing the risk of Cd entry into the food chain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据