4.7 Article

Optical properties of soot aggregates with different monomer shapes

期刊

ENVIRONMENTAL RESEARCH
卷 214, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.113895

关键词

Monomer shape; Soot; Fractal aggregate; Optical properties

资金

  1. National Key Research and Development Plan [2021YFC3000300]
  2. National Natural Science Foundation of China [U1733126]
  3. Fundamental Research Funds for the Central Universities [WK2320000052]

向作者/读者索取更多资源

In this study, different shapes of monomers in fractal soot models were established, and their optical properties were evaluated. It was found that the non-sphericity of monomers does not necessarily affect the non-sphericity of the whole soot particle. However, the difference in optical properties caused by different monomer shapes cannot be neglected.
The monomer of soot fractal aggregate is usually considered to be sphere, but the monomer shapes are cube and hexagon by some transmission electron microscope (TEM) and scanning electron microscope (SEM) observation. In this paper, the fractal soot models of different monomer shapes (sphere, cube, ellipsoid, hexagonal prism) were established. And the optical properties of models are calculated by discrete dipole approximation (DDA). After systematically comparing the Muller matrix and optical cross section properties between the models, we find that monomer deviation from sphericity does not necessarily lead to further decline of F-22(pi)/F-11(pi) even at shorter wavelengths. In other words, the non-sphericity of monomers does not necessarily affect the non-sphericity of whole soot particle. This can provide some implication for lidar remote sensing observation. However, other light scattering matrix elements can keep good consistency. The maximum deviation of extinction cross section of hexagonal prism model is 11.2%. The more the monomer shape deviates from the sphere, the more the optical integral properties of the non-spherical monomer model deviates from the optical integral properties of sphere monomer model. Hence, the difference in optical properties caused by different monomer shapes cannot be neglected when the monomer deviates significantly from a spherical shape. This work is helpful to evaluate the optical properties of soot aggregates more precisely.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据