4.7 Article

Concentrations of blood and urinary arsenic species and their characteristics in general Korean population

期刊

ENVIRONMENTAL RESEARCH
卷 214, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.113846

关键词

Arsenic species; Biomarkers; Biomonitoring; Blood; Urine; General population

资金

  1. Ministry of Food and Drug Safety [19162MFDS093]
  2. Ministry of Education of the Republic of Korea
  3. National Research Foundation of Korea [BK21 FOUR 5199990214126]

向作者/读者索取更多资源

This study investigated the levels and distributions of arsenic species in urine and blood in the Korean population. It found that blood arsenic concentration cannot represent urinary arsenic, but different compositions of urine and blood may reflect distinct information about arsenic exposure. Further investigations on exposure factors and health are needed for low-exposure groups.
Arsenic (As) exposure has been extensively studied by investigating As species (e.g., inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)) in urine, yet recent research suggests that blood could be a possible biomarker of As exposure. These investigations, however, were conducted on iAs-contaminated areas, and evidence on populations exposed to low levels of iAs is limited. This study aimed to describe the levels and distributions of As species in urine and blood, as well as to estimate methylation efficiency and related factors in the Korean population. Biological samples were obtained by the Korean Ministry of Food and Drug Safety. A total of 2025 urine samples and 598 blood samples were utilized in this study. Six As species were measured using ultra-high-performance liquid chromatography with inductively coupled plasma mass spectrometry (UPLC-ICP-MS): As(V), As(III), MMA, DMA, arsenobetaine (AsB), and arsenocholine (AsC). Mul-tiple linear regression models were used to examine the relationship between As species (concentrations and proportions) and covariates. AsB was the most prevalent species in urine and blood. The relative composition of iAs, MMA, DMA, and AsC in urine and blood differed significantly. Consumption of blue-backed fish was linked to higher levels of AsB in urine and blood. Type of drinking water and multigrain rice consumption were associated with increased iAs concentration in urine. Except for iAs, every species had correlations in urine and blood in both univariate and multivariate analyses. Adolescents and smokers presented a lower methylation efficiency (higher %MMA and lower %DMA in urine) and females presented a higher methylation efficiency (lower %iAs, %MMA, and higher %DMA in urine). In conclusion, blood iAs concentration cannot represent urinary iAs; nonetheless, different compositions of urine and blood might reflect distinct information about iAs exposure. Further investigations on exposure factors and health are needed using low-exposure groups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据