4.7 Article

Cruise observation of the marine atmosphere and ship emissions in South China Sea: Aerosol composition, sources, and the aging process

期刊

ENVIRONMENTAL POLLUTION
卷 316, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.120539

关键词

South China Sea; Ship emissions; Chemical composition; Source apportionment; Aerosol aging; Secondary organic aerosols

向作者/读者索取更多资源

Ship-based measurements were conducted in the northern South China Sea to investigate the chemical composition and aging of marine atmospheric aerosols. The results showed that ship exhaust and coastal particles had similar composition, while marine particles were sulfate-dominated. Different factors contributing to organic aerosols were identified for different sampling periods, highlighting the influence of ship and inland emissions on marine aerosols. The study also revealed the significant impact of biomass burning on secondary organic aerosol formation.
Marine atmospheric aerosols impact the global climate and biogeochemical cycles. However, how the compo-sition, sources, and aging of these aerosols affect the above processes has not been thoroughly studied. Here, we conducted ship-based measurements in the northern South China Sea to investigate the chemical composition and aging of aerosols from various sources during the summer of 2019. Separate measurements were conducted at the bow (marine environment) and stern (cooking, smoking, and engine exhaust) of the ship. Source appor-tionment of organic aerosols (OAs) was conducted using positive matrix factorization (PMF) and trajectory models. The results showed that ship exhaust and coastal submicron particles were composed of comparable sulfate and organic fractions (both approximately 43%), distinct from the sulfate-dominated particles in the marine atmosphere (52-77%). PMF using the multilinear engine-2 solver identified five factors for the stern sampling period: hydrocarbon-like OA (HOA-I, 9%), slightly oxidized HOA (HOA-II, 25%), cooking OA (COA, 13%), cigarette smoke OA (CSOA, 4%), and low-volatility oxygenated OA (LV-OOA, 49%). The primary OAs (HOA-I/II + COA + CSOA), derived mostly from direct ship-related emissions, contributed to approximately half of the OAs, whereas the contribution from the highly aged marine atmosphere was only 20%. Notably, certain living-related emissions (i.e., COA and CSOA), which were often neglected in previous studies, might represent a considerable contribution to OA emissions from the ship. Four factors were identified for the bow sampling periods: HOA (13%), biomass burning OA (BBOA, 9%), semi-volatile OOA (7%), and LV-OOA (71%). The BBOAs from the Indo-China and Malay peninsulas were aged, converted to secondary organic aerosols (SOAs) during transport, and influenced by the combined photo-oxidation and liquid-phase reactions, indicating a substantial impact of BB on SOA formation. Our study highlights the influence of ship and inland emissions and their aging during transport on marine atmospheric aerosols.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据