4.5 Article

The occurrence of tire wear compounds and their transformation products in municipal wastewater and drinking water treatment plants

期刊

出版社

SPRINGER
DOI: 10.1007/s10661-022-10450-9

关键词

Tire wear; Wastewater; Drinking water; Diphenylguanidine; Hexamethoxymethylmelamine; 6PPD-quinone

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada

向作者/读者索取更多资源

In this study, the presence of 29 chemicals derived from tire wear in wastewater treatment plants and drinking water treatment plants was monitored. The results showed that these compounds had different concentrations and quantities in influents and effluents, indicating that both types of treatment plants may serve as sinks and sources of these substances.
In the present study, 29 chemicals derived from tire wear were monitored by deploying Polar Organic Chemical Integrative Samplers (POCIS) in four WWTPs and two drinking water treatment plants (DWTPs) located in a municipality in southern Ontario, Canada. Target analytes included 1,3-diphenylguanidine (DPG), the oxidation byproduct of N-(1,3-dimethylbutyl)-N '-phenyl-1,4-benzenediamine called 6PPD-quinone, hexamethoxymethylmelamine (HMMM), and 26 of HMMM's known transformation products (TPs). This study is the first to monitor all these target compounds in DWTPs, as well as to report data for the presence of 6PPD-quinone in WWTPs. HMMM and selected TPs of this compound were detected in POCIS deployed in the WWTPs and in the DWTPs. The maximum estimated time-weighted average (TWA) concentration of HMMM of 83.2 +/- 25.2 ng/L was observed in the effluent of one of the WWTPs. The TWA concentrations were not determined for any of the other target analytes, as POCIS sampling rates have not been determined for these chemicals. The total mass of HMMM and its TPs accumulated on POCIS frequently exceeded 4000 ng and the masses were generally lower in WWTP effluents relative to the influents. For other target analytes, the amounts accumulated on POCIS deployed in WWTP effluents frequently exceeded the amounts accumulated on POCIS deployed in the influents. DPG was detected in POCIS deployed in both the WWTPs and the DWTPs, and 6PPD-quinone was detected in POCIS deployed in both the influent and the effluent of WWTPs. We speculate that these tire wear compounds are entering WWTPs through stormwater overflows into the sewers or from commercial sources (e.g., car washes). This study highlights the need for an assessment of both WWTPs and DWTPs as sinks and sources of these tire wear compounds and the efficacy of treatment processes to remove them from both wastewater and drinking water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据