4.5 Article

Ice thickness distribution of Himalayan glaciers inferred from DInSAR-based glacier surface velocity

期刊

出版社

SPRINGER
DOI: 10.1007/s10661-022-10658-9

关键词

Ice thickness; Laminar flow law; DInSAR; Glacier movement; Meltwater influx

向作者/读者索取更多资源

Retrieving glacier ice thickness is crucial for monitoring water resources and predicting glacier dynamics and changes. This study estimates the ice thickness of High Mountain Asia glaciers using a flow model and remote sensing techniques, highlighting the issues related to velocity-based thickness inversion. The inclusion of velocity influencing parameters in physical-based models is suggested for accurate ice thickness inversion.
Retrieval of glacier ice thickness is extremely important for monitoring water resources and predicting glacier dynamics and changes. The inter-annual glacier ice thickness observations (more than 5 years) exploit the glacier mass changes. Ice thickness is one of the important parameters to predict the future sea-level rise. Without adequate knowledge and precise information of glacier ice thickness distribution, future sea-level changes cannot be accurately assessed. In this study, we use an existing flow model to estimate the ice thickness of the High Mountain Asia (HMA) glaciers, using remote sensing techniques. The glacier ice velocity is one of the significant parameters in the Laminar flow model to retrieve the ice thickness. The glacier ice velocity is derived by utilizing the Differential SAR Interferometry (DInSAR) technique. The most optimum DInSAR data (ALOS-2/PALSAR-2) is used for estimating the ice velocity of the HMA glaciers. The ice thickness is mainly estimated for five different states in the HMA region, namely Himachal Pradesh, Uttarakhand, Sikkim, Bhutan, and Arunachal Pradesh. Most of the states are observed with a mean ice thickness of 100 m. Five benchmark glaciers (Samudra Tapu, Bara Shigri, Chhota Shigri, Sakchum, and Gangotri glaciers) are also selected for validating our results with the existing thickness information. The issues related to velocity-based ice thickness inversion are also emphasized in this study. The high-velocity rate due to the influx of melting water from adjacent glaciers causes an increment in the flow rate. This abnormal velocity derives erroneous ice thickness measurements. This is one of the major problems to be considered in the velocity-based thickness-derived procedures. Finally, the investigation suggests the inclusion of the velocity influencing parameters in the physical-based models for an accurate ice thickness inversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据